ABCA1-induced cell surface binding sites for ApoA-I.
نویسندگان
چکیده
OBJECTIVE The purpose of this study was to understand the interactions of apoA-I with cells expressing ABCA1. METHODS AND RESULTS The binding of wild-type (WT) and mutant forms of human apoA-I to mouse J774 macrophages was examined. Analysis of total binding at 37 degrees C of 125I-WT apoA-I to the cells and specifically to ABCA1, as determined by covalent cross-linking, revealed saturable high affinity binding in both cases. Determination of the level of cell-surface expression of ABCA1 showed that only about 10% of the apoA-I associated with the cell surface was bound directly to ABCA1. Furthermore, when 125I -apoA-I was cross-linked to ABCA1-upregulated cells and examined by SDS-PAGE, the major (approximately 90%) band migrated as monomeric apoA-I. In contrast to WT apoA-I, the C-terminal deletion mutants delta190 to 243 and delta223 to 243 that have reduced lipid affinity, exhibited marked reductions (50 and 70%, respectively) in their abilities to bind to the surface of ABCA1-upregulated cells. However, these C-terminal deletion mutants cross-linked to ABCA1 as effectively as WT apoA-I. CONCLUSIONS This study demonstrates that ABCA1 activity creates 2 types of high affinity apoA-I binding sites at the cell surface. The low capacity site formed by direct apoA-I/ABCA1 interaction functions in a regulatory role, whereas the much higher capacity site generated by apoA-I/lipid interactions functions in the assembly of nascent HDL particles.
منابع مشابه
Caveolin-1-Mediated Apolipoprotein A-I Membrane Binding Sites Are Not Required for Cholesterol Efflux
Caveolin-1 (Cav1), a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I) cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs) derived from wild type (WT) or Cav1-deficient (...
متن کاملJanus kinase 2 modulates the lipid-removing but not protein-stabilizing interactions of amphipathic helices with ABCA1.
ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these res...
متن کاملApoA-I facilitates ABCA1 recycle/accumulation to cell surface by inhibiting its intracellular degradation and increases HDL generation.
OBJECTIVE Calpain-mediated proteolysis is one of the major regulatory factors for activity of ATP-binding cassette transporter (ABC) A1. Helical apolipoproteins protect ABCA1 against this degradation and increase generation of HDL. We investigated the mechanism for this reaction focusing on roles of endocytotic internalization of ABCA1. METHODS AND RESULTS Surface ABCA1 was labeled with bioti...
متن کاملATP-Binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells.
High-density lipoproteins and their major protein constituent apolipoprotein A-I (apoA-I) possess diverse atheroprotective properties. Most of them must be exerted within the arterial wall. Actually, high-density lipoproteins are the most abundant lipoproteins within the arterial intima. We have recently reported that apoA-I is transcytosed through aortic endothelial cells. In the present study...
متن کاملCeramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1.
It is widely accepted that functional ATP-binding cassette transporter A1 (ABCA1) is critical for the formation of nascent high density lipoprotein particles. However, the cholesterol pool(s) and the cellular signaling processes utilized by the ABCA1-mediated pathway remain unclear. Sphingomyelin maintains a preferential interaction with cholesterol in membranes, and its catabolites, especially...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 27 7 شماره
صفحات -
تاریخ انتشار 2007